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Introduction

The fluid dynamics of flows of dispersed materials in a fluid is fundamental t.() suspen-

sions, bubbly liquids, droplet flows, pneumatic transport, fluidization and erosion. Equa-

tions of motion to describe these materials must deal with the interactions between them _s

well as the deformation of the carrier fluid. Models that treat assemblages of solid partich's

have been proposed and studied (Jenkins and Savage, 1983) that result in the particles

behaving like a gas, with a pressure due to the fluctuations in the velocities that is at-

tributed to collisional motions of the indivual particles. Models for fluid-particle mixt.m'(,s

(Drew 1983) do not include this effect (Passman 1989) The purpose of the present pap(T

is to derive constitutive equations to supplement the equations of motion that include the

effects of the particle velocity fluctuations. The particle motions are assumed to be _tt, a

sufficiently high Reynolds number that the fluid motion is inviscid, but viscous effects such

as boundary layer separation are neglected.

Equations of Motion

The appropriate general average is the ensemble average. The ensemble average is

the appropriate generalization of adding the values of the variable for each realization, and

dividing by the number of observations. We shall refer to a "process" as the set of possit)le

flows that could occur, given that the initial and boundary conditions are those appropriate

to the physical situation that we wish to describe. We refer to a "realization" of the flow

as a possible motion that could have happened. Generally, we expect an infinite numt_er

of realizations of the flow, consisting of variations of position, attitude, and velocities (_t'

the discrete units and the fluid between them.

If f is some field (i.e., a function of position x and time _) for some particular real-
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ization, ii, of the process, then the average of f is

(1) f(x,t) = [ /(x, t; #)dm(#)
I

where din(#) is the measure (probability) of observing process # and M is the set of all

processes. We refer to M as the ensemble. The ensemble average is the fundamental

average that allows the interpretation of the phenomena in terms of the repeatability of

exl)eriments. Any one exact experiment or realization will not be repeatable; however, any

rq)etition of the experiment will lead to another member of the ensemble.

In order to apply the averaging procedure to the equations of motion, we shall need

some results about the averaging procedure. We shall also give these results for time- and

vohune averaging.

In order to average to the exact equations, we need expressions for Of lOt and Vf. If

f is "well behaved", then it is clear from the definition of the ensemble average that

(2) Of _ Of
at at

alld

(:3) Vf = Vf

Functions are generally discontinuous at the interface in most multiphase flow. They

are well behaved within each phase, however. Thus, consider XkVf, where Xk is the phase

indicator flmction for phase k:

(4) Xk = {1' if x6 k;0, otherwise.

In the averaging process we will require the result

(5) --OXk + vi • VXk = O.
Ot

This relation has a reasonable physical explanation. Note that it is the "material" deriva-

tire of Xk following the interface. If we look at a point that is not on the interface, the11

either Xk = 1 or Xk = 0. In either case, the partial derivatives are both zero, and hence
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the expression (5) is zero.

interface,we seetile function Xk as a constant jump. Thus,

The averaged equations are

Mass

(o) OXkp
Ot

If we consider a point on tile interface, if we move with the

its material derivative is zero.

-- + V . Xkpv = p(v--vi).VXk

Momentum

(7)
CgXkflV

Cgt
+ V. Xkpvv = V • XkT + Xkpg + (pv(v -- vi) -- T) • VXk.

Next, we define the appropriate average variables describing multiphase mechanics.

First, the geometry of the exact, or microscopic situation is defined in terms of the

phase function Xk. The average of Xk is the average fraction of the occurrences of phas(,

k at point x at time t.

(8) ak = Xk

The quantity cgXk/On is the delta function defining the interface, its average is the inter-

facial area density.

(9)
cgX k

ai -- 0_1

All the remaining variables are defined in terms of weighted averages. The main, or

"phasic" variables are either phasic weighted variables (weighted with the phase functiou

Xk) or mass-weighted (or Favr6) averaged (weighted by Xkp).

The "conserved" variables are the density

(10) _ = Xkp/c_k,

and the velocity

(11) --xp - --x
v k = Xkpv/_kpk
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(19)

Tile averaged stress is defined by

= XkT/ k

The average body %rce is

(13)
--2p ,- --X
gk = Xkpg/akpk

As discussed above, several tern:s appear representing the actions of the convective

and molecular fluxes at the interface. Tile convective flux terms are the mass generation

rate

(14) Fk = p(v - vi). VXk

and the interracial momentum flux

(15) %'}rk = pv(v - v_)-VXk

The interfa.cial momentum source is defined by

(16) Mk = -T.VXk

The motion of the interfaces gives rise to velocities that are not "laminar" in general.

The velocity fluctuations may be due to turbulence or to the motion in the phases due

to the motion of the interfaces. The effect of these velocity fluctuations, whatever their

source, on a variable is accounted for by introducing its fluctuating field (denoted by the

prime superscript), which is the difference between the complete field arid the appropriate

mean field. For example,

t --zp
V k = V -- V k

Then,

(:7)

Xkpv v ,- --xp --xp=x p( k +%)

._,. --xp--xp v V ! V !
=AkPVk Vk +-XkP k k

=oet, t-3_.V_p¥_p _ c_kT kn_.
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The Reynolds stress is defined by

(18) Tff _ = -X_pv'_v'_/o,_,

The averaged interracial pressure pa.i and shear stress Vki are introduced to separate

mean field effects from local effects in the interfacial force. The interfacial pressure is

defined by

(19) pki = pOXk/O_Ik/ai

and the interfacial shear stress is

(2o) rki = r_.O,Yl,./On_./ai

Thus,

(21)

M k = - T. VX}

=pVXk -- r • VX_

=pl,.iVXk - rki • VX} - T_i • VXk

=pkiVa'_. - rk.iVc_x. + M' k_

where we define the interfacial extra momentum source

(22) M_ = Mk + Pki_7Ctk -- "rl,.i • VO'k

and introduce

T[. i = ' _., =.--PkiI+ ki --(p--Pki)I+(v--'rki).

The averaged equations governing each phase are

Mass

(23) OakP_k a =_V _p = F/,-
0_+ V" kPk k

Momentum

(24)
OCt --xVzO

kDk k

Ot
+ v. _.v;'v;' =_,_ (_;+T_')+._ +M_+v;_:i_k
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The equation of conservationof massfor phase k (23) can be used in the monlentunl

equation (24) to yield the Lagrangian form of the momentum equation:

a'kPk-ZDkVkDt - o_k-fi__ + v k • VV_ v

= V. c_k(Tk + Tkn') + C_kp_g + M i-

rn --xp(25) + pkiVC_k -- rki • _Ta'k + (vki -- v k )Fk.

The jump conditions are derived by multiplying the exact jump condition by nl • VXl

and averaging. This process yields the following conditions:

Mass

(26) F1 +F2 =0

.Momentmn

27) M1 + M2 + Vl'}FI + V2nlF2 = In

Constitutive Equations

The exact equations of motion can be solved for the flow of an inviscid, incompressible

uTotational fluid around an isolated sphere. We shall use this solution to derive information

about constitutive equations for the force on the dispersed phase, the average stress, the

Reynolds stress, and the interfacial pressure when the particle phase is allowed to have' a

random velocity.

The fluid velocity at x for the irrotational flow of an incompressible inviscid fluid is

expressed in terms of the velocity potential by

(2s) v(x) = V_(x)

The continuity equation becomes

(2S) 0 = V-v = V. V¢ = V2¢_.

The pressure at any point x is given in terms of the velocity by Bernoulli's equation.

0¢ 1
(30) p- p(_ + =lV¢l_) = p0 = constant.

Z -
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Consider a sphere located at a point z in a flow field, moving with velocity vp. The

boundary condition at the surfaceof the sphereis

(31) n-Vp = n-v= n. VCat Ix-z I =a,

where a is the radius of the sphere, n is the normal to the surface of the sphere and vj, is

the velocity of the sphere. The boundary condition far from the sphere is

(32) ¢ --+¢_oas fx- zl-_ _,

where

1

¢_ = v0(t) •x + _x 'e1' x

is the velocity potential that would exist in the fluid if the sphere were not present. Here

v0(t) is the (unsteady) velocity of the fluid at the origin, and e I is the rate of strain tens(>r

for the fluid. We shall assume that e I is constant.

A convenient form for the solution of this problem is given by Voinov (1973), and is

1

¢=v0(t)'x+ _x.e I.x

: ( a3 )+ _ (v. - vo(t) - z. _:). (x - z)

:(33) + _(x - z). e/. (x - z)

If there are many spheres in the flow field, the solution given above (33) will still be

a good approximation if the spheres are sufficiently far apart that the flow disturbances

due to the individual spheres do not interact. That is, the flow must be sufficiently dilute.

Thus, we can think of each sphere as "isolated" in the sense that it only interacts with its

neighbors through the averaged fields. We assume that each sphere lies in a "cell," and

inside that cell, the velocity is given by eq. (33). We shall approximate the cell to be a

sphere of radius R. We choose R so that

3/4 3-57rR = _.
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Averaging

We now introduce a meansof evaluating the averagingprocess. The first aspect ()f

the ensembleaverageis that the spherevelocity is random, with a distribution function

.f(1)(v1,,x, _'). The secondaspect is that the sphereand the surrounding cell can lie with

the sl)herecenteranywherewithin radius R of the space point x. The average is performed

by first integrating over the distribution of the velocities that the sphere can have, followc'd

t)y an integration over the possible positions that the sphere center can have. Note that if

Ix - z I < a, the material making up the sphere occupies the field point x and if Ix - z[ > a

the fluid occupies the field point x.

The average of a quantity g(x,t;z, vp) is performed in two parts, that is first, we

I)erform a conditional average of g for given st)here position z, integrating over the velocity

space vp, followed by the average over the spatial p()sitions the sphere can have. \Ve

assume that the distribution ()f positions is such that

dV [l_x, V(_d(X,t)].4_-R_ o'd(x, t)3

is the probability of finding the sphere in a w)lume dV surromxding the point z, where

x' = x - z. Thus, for the average ow'r the fluid of a quantity g, we have

j¢_, g(x, t; z, v,, )f(a)(v,,, z, t)dVvp.
(34) tlz)

Here the notation ?j(x, tlz ) is intended to suggest the conditional average assuming the

st)here is located at z. The average of g over the fluid phase is then given by

I L'jj"(35) _ (x, t) = 47r(R3 _ cd) _(x, t]z)df_dr,(_)

wh('re ft(r) is the sphere of radius r centered at x, and the integration is over the z varial)h_.

It will be convenient to introduce the average particle velocity and the fluctuation

I)article velocity as

(36) %(x, t) = JR/. x, t) dI,(,,,

(37) !

vv(x, t) = - %(x, t)
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Note that

m

t__-- 0(3S) Vp

The particle kinetic energy per unit. particle mass is

(39) u_*(x't) = -9 3 IVpl2/(l/(vv'x't) dVv,,

and the Reynolds stress for the particles is defined by

//_ ' '4(40) Ty_(x,t) = --Pal .VpVpJ a)(vp,x,t) dI_,

In order to evaluate the integrals appearing in the averaging process, we must express

the z dependence of the velocities in terms of x and x' = x - z. \Ve have

and

vs(_) -- vs(×) - x'. es

VI,(Z) = VI,(X) -- x'.ep

where ep is the velocity gradient tensor for the average particle motion. \%% shall assmn(:

that this tensor is constant and symmetric.

We have

(41 )

v(x,t; z, vp) = VO(x,t; z,v,,)

= _ -- ! X !vs(x) + (vs(x) - v,,(x) v,,- (_s - _)) y

_(vs(x)- Vp(X ) Vp- .(e s ep))_ X t _ . X t

()-a5 5x_'ef-x' x t
+ 3 x''ef _ 3

t
X

Note that Vf(X) is the fluid velocity that would exist at x if the sphere were not present,

and vy(z) -Vp is the relative velocity between the sphere and the fluid evaluated at the

sphere center. It is convenient to have expressions for the integrals of powers of x' over

f_(r). For these integrals, we note that

(42a,) fa x'... x'dQ = 0
(,-)
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if the factor x' appearson odd number of times, and

(4217) f_ d_ = 471-7`2
(,')

42(:) f x'x'd_ = 4-rrr4I
(,.) 3

[ XtXtXtxtdfl = ATrr6_"](42d)
(,.) 15

where E is a fourth order isotropic tensor defined in Cartesian coordinates by

Eijkl = 5ijSkl + 5ikSjl + 5ilSjk.

We fluther note that if v is a vector, and e is a symmetric second order tensor with cii= O,

then

_ijklvjekl = 9-'vjeji.

Derivation of Averaged Quantities

In order to average eq. (41), we note that the average over the velocity fluctuations

gives no contribution, by eq. (381). Then averaging over z gives

(43) t) = w(x, t).

Sinfilarly, to obtain the interfacial averaged velocity of the fluid, again the integration

over the velocity fluctuations gives no contribution, and we have

Vci(X,t)-- 1 _ V(x, tlz)dO.
4rra2 (a)

Substituting and performing the integrations lead to the result

(44) Vci(X , t) = Vf(X, t).

This result is a little surprising at first. The fluid at the surface of the sphere satisfies the

condition n. v = n.Vp, but is allowed to slip in the tangential direction. After the passage
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of the sphere, the fluid that was momentarily in contact with the surface of the sphere is

again moving with the fluid. The result says that even during the time that it is in contact

with the sm_ace of the sphere, its average velocity is still equal to the average velocity of

the fluid, and not of the sphere.

Now let us compute averaged pressures using this formalism. The exact prcssm'e c_m

bc computed by Bernoulli's equation (30)• In order to evaluate the derivatives in eq. (30),

!

we note that x is constant during t derivatives, but c3z/Ot = vp = Vp(z,t) + vp. Also,

when evaluating U¢, both t and z are held constant. The pressure is given by

(OVo l[Ovo OVv(x,t )(45) ;(x't;z'vv)=P°-P_\ Ot .x+:_ Ot Ot

] (o')• X !+ (v_(x,_)+./_) ._: - (v,(x,t) + v;) . e,,

1 (..)5(-s(x) - (v,,(z,t) + v;) - x' •(_: - _,)) -(v,,(,.,_)+ _;,)

3 (a _)-_(v/(x)-(%(z,t)+Vp)-X'.(ef-ep)).x' _-_ x'.(Vp(z,t)+v;)

(a 5 ) 5 , (a 5 ) 1
2 V/ . Xt Xl . XiXi

-_(%(z,t)+ ,).e: V +_ ._: .(%(_,_)+v,,) V +_,:.v:

: ( a_)+gl-s(x)- (%(z, t) + v;)- x'-(e: - _)1'

+_v:.(v:(x)-(%(x,t)+ v;)-x'.(_:-_,)) _

+_ ((,.:(x) - (%(,_,t) + v;) - x' •(_: - _,)) •x') -:

+_(v,,(×, t) + ",,) •_s •x' .... +.;,t x,x,o: x,
\r'}

_(v/(x)-(Vv(x,t)+v_o)).e / • x'( as)_-_

- (v:(x)-(%(x,_)+vp)).x'x'.e:.x' -_

3 (aS))+ _(vs(x)- (%(x, t)+ v',)), x'x'. _:. ×'
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.2 and efep Averaging over the velocitywhere we have ignored terms of order e}, (v, .

fluctuations gives

(Ov0 1 0v0 O%(x, t)
Ot Ot

+

1 (")_(v/(x) - Vp(x,t))- el. x' 7/-

5

_(vs(x)- v,,(x,,)). x'x'. o:. x' ( ,,8,_
\H°/

' )+:(w(x)- v,(x,_)), x'x' ._. x' (_'_)
_ \,._07

The spatial integration is tedious, but results in

Ovf 1
(46) P_ = P0 - pc-jF • x - _vs(x ) - vs(x )

where we ignore terms of order a/R in addition to those ignored previously. We also obtain

(47)
_r,_ V_(x, t) - V_(x, t)l_ + _p_._ .
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The interfacial force density Ma is given by Me = pVXd. Thus,

(48) Md(x, t) -- } 7r-R3 (-) ad /

This can be computed by substituting eq. (45) for the pressure, and recognizing that

n = x'/a. We must also expand the terms Ud_(z,t) = uaR_(x,t)- x'- ruJt"(x,t) and

T_(z, t) = TR_(XH, ,t)- x'. VTaR_(x,t) The result is that

(49) Md(X, t) = _Voa

(1 [Ov, p(x,t) Ov:P(x,t) ]+_._c _ [ N ot +vF(×,O.vvF(x,t)-v_°(x,_) • -_"

v_ (x,t)) (VF(x,t) -_ (x,t))vo.d

+_(VF(x,t) -_P" -v d (x,t)).v_d)- v_ tx, t)(v_"(x,t) -_0

-a,a_: Vu_ _ -ad--9V • T,7" -
-0 20 __. Va'd" -_a

Note that no drag force is present in eq. (49). This is the result of D'Alembert's 1)ara(l()x.

that is, there is no net force on a body moving at a constant velocity through an invi.wi(l

fluid at rest.

If a distribution of stresses is applied to the surface of an elastic body, there results a

distribution of stresses inside the body. These induced stresses are important in c()mputing

constitutive equations for solid-fluid mixtures. The average stress inside the sphere is given

t)y

-" ' io'lL%(x,t)- g_.,_ (,)

\vhere

T(x, tlz) = f T(x,t;z, vp)f(1)(v_ ,,z,t)
3

Here T(x, t; z, vp) is the stress at point x inside a sphere having its center at z at time t.

We shall assume that the spheres are linearly elastic solids, but we shall assume that t h('
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deformation is sufficiently small that the fluid motion is unaffected by the deformation of

the spheres. Then the stress-strain relation is given by

(50) T =/_[Vu + (Vu) t_] + )_sV-uI

This can be written as

(51) T = a + OI

where

(2)O= X_+g#, V.u

= ,_ [Vu+ (Vu)t'] - 5v. uI

The st)herical part of the stress satisfies (Love, 1932)

(52a) V2@(x, t; z, vp) = 0

(52b) O(x, t; z, vp) = -p(x, t; z, vp) on Ix - z[ = a

Averaging over vp gives

(53a) V20(x,tlz ) = 0

(53b) o(,,,tl,,) = -p(x,_lz) on Ix- _t=

(54)

Solving and performing the integration over z gives

_(x,t) = -_(x, t).

The solution for a is also given in Love (1932) and can be averaged in vp and then

integrated in z to give

_(x,t) = _ - (v_,(x,t)- v2'(,,,t))(v_,'(x,t ) - v2'(x,t)) - _---_d

(55) + _ (17_'(x,t)- V_P(x,t)l 2 + 2udR") I .
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We next turn to computations of the Reynolds stress using the velocity fluctuations

due to the inviscid flow around a sphere. Using the expression for the velocity (41) and

the average fluid velocity (43), we see that

1 (.)V'c(X,t;z, vp)= _(vs(_.)- v.)

' ( a_)2(.s(_) - v_). x' ;z

(') (')t X t

Averaging over the particle velocity fluctuations yields

X !

T_' (x, tlz ) = -pcv--_(x, tlz)v-_(x, tlz )

(.)-:.(.)+ Pc -_ Pd 4 _- [X'(X'. --

°(.) ]+ _ _-_ x'×'(x'. •x')
Pa

T R_ T_'
) + (x'. )x']

Pd Pd

The integration over z can be performed, yielding

(57)

-K6_d_c (vF - =_.,,=.x. -x. _ __c . , v_j_Vc -vd) _

- vd ).(vF - v_ ) +

The fluid fluctuation kinetic energy is u_ _ !v_-r-T_v_

the trace of eq. (57) for T_R_. The result is

(5s)

and can be computed by taking

__ -- V d --It -20_dtl d .

Conservation of Fluctuation Kinetic Energy

In analogy with statistical mechanics for assemblages of molecules, the theory of av-

eraging as applied to multiphase flows allows the computation of averaged equations for

higher moments of velocity and pressure correlations.

We start with the derivation of averaged equations for the fluctuation kinetic energy

for each phase. The exact momentum equation is

(59) Opv
0---t- + V. pvv = V • T + pg
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\Ve shall derive an equation for the evolution of the kinetic energy. The Lagrangian

forlll of the momentum equation is

(0; )(60) p +v. Vv =V.T+pg

If we take the dot product of v with eq. (60), we have

( 01v2 _ ) =v-(V.T)+pv g(61) P\ Ot +v.V v 2 -

\Vc note that

v-(V.T)=V.(T.v)-T:Vv

If" we also return to the Eulerian form, we have

OI P u2 _pt,2V(o'_) O_Y- + v. =V.(T.v)-T' Vv+pv.g

If w(" apt)ly the ensemble average to eq. (62), we have

(63)

OXk ½pv 2

Ot
1 2

+V.Xk-pv v=V XkT.v-X_.T'Vv
2

1

+ Xkpv .g- [p._v2(v - vi) + T-v). VXk]

We define the fluctuation velocity, of phase k by

I --xp
(64) v k = v - v k

Then

(65)
t --xp _xpx2t,2=(v_) 2+2vk.v k +(% j

so that, noting that Xkpv_ = Xkpv -- Xkpv2 ° = 0, we have

. 1 2 Xkfl(v[.) 2 + Xkp2v_ v; ° + Xkp(v2P) 2 -x n_ __ 1 _p
XkP9V = . • = O_kPkU k +akpk_Vk

Furthermore,

v2v=(vk) vk+(vk) vk + " + ' "vk k+ k J Vk+tvk _ V_.
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so that

--z Re_:p=°_kq h + akpkUk k

Also, note that

Note further that

Then we have

_tI1(t

--xp Re I _7;_'P_2--xP

--C_kV k .T k +ak_tt'k _ vk

--xp t

T.v=T.v a, +=T-v k.

T:Vv=T'VV_. °+T'Vv_.

--xp I x --J'p _ "

XkT.v=X_T.v k +XkT.v k =a'_T_v k -akq_

XkT'Vv=XkT'VV_. p+XkT'Vv_.=akT k vv k + Dk,

where qT qp r= _ + qk and D,- = XkT : Vv_..

Next, in the interracial terms, we have

_'t11([

i(e;o) r --_O m I
+ v k • Vkir _ + p.5(_,_)2(v -- vi)" VXk

(T v) VX_ = (T -_0 • .v k + I'I,'\.• • -v_. ).VX,_+(T.V_) VXk=Mk --_0

The equation for the conservation of fluctuation kinetic energy then becomes

(6G)
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The equation for the averagekinetic energy is

2',v k ) --_p 2
• _kPkvk ) =Ot + v v_ p

• --xpvF. v  k(Tk + + Mk.v 

--xp --xp m(67) + akpkg" v k + v k . vkiFk.

Subtracting this from eq. (66), we have

--x Re
Oa'kpku_ --z Re--zp Re --xp

Ot

1

_ - pS(vk)2(v' - vi)" VXk + Wk - Dk

This equation has some interesting interpretations. First, note that the dissipation

due to the Reynolds stress akTff _ • VV_ ° acts as a source of fluctuation kinetic energy,

while its counterpart for the molecular dissipation akT_ • VV_ p does not appear in this

equation. Dissipation on the macroscopic scale, then, winds up as different things on the

microscopic scale. Also, the dissipation due to microscopic velocity fluctuations Dk implies

a loss of fluctuation kinetic energy. Thus, loss mechanisms, such as inelastic collisions or

viscous dissipation in the velocity fulctuations, cause a loss of fluctuation kinetic energy

to heat. Finally, the working of the fluctuations at the interface, 14/-k appears as a source

of fluctuation kinetic energy.

Since this equation is unnecessary for the fluid phase, we shall ignore it for I: = c.

For/," = d, we note that Dd = 0 is consistent with the linear elasticity assumption and the

assumption that the particle radius a does not change. Furthermore, if assume no phase

change (Fk = 0), and we ignore triple correlations in the particle velocity fluctuations

! ! I

(vpvpvp = 0), we have

0it Re

(69) adP_ d --. wy v7 : vv7 +

Discussion of the Force on a Sphere

The equations of motion for the mixture are

(70) 0ad
O--i-+ V. _dV_ ° = 0
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(71)
OOl c

0--7-+ V . a_v:P = 0

__ (Ov_ p __p )(72) o_dpd\ at + vd "vv_p
1_. R_ 1 _

- Vd I )+U" .adT d

+V'ad {pc x [--_O(Vc(x,t)- Vd(X,t))(Vc(X,t)- Vd(X,t))

+ g61%_(,,,t)- vT'(x, Ol_i

arT(x,,) __,, ]ot ot + v_'(x, t). vv_(x, t) - v_(x, t.). Vvd (x, t)

- Vv_ (x, t)]20 [v_(x' t) v_(x,t)].[vv_(x,,)- -_"

-_ v. (x,_))-(v_(x,_) -_+pc _(vy'(x,t)--_ - v_ (x,t))vo, d

+ _(v:_(x,t) --_ - va (x,t)). w_ )v d (x, t))(V_P(x, t) -_P

+_ _v(_,_,_ _)
-0

FoVT(x,t)

(73)

-- d l k -- c --x
Pd

+3 ((_cXp-zp -zp 21zdRe /7-v d ).(V_P--Vd )+ )I
1)

)+ g_lvT(x,t)+vd(x,t)12+ _,_g" W_,

-a _-5_ Ot Ot

]
+ vT'(x,_) vv_,(x,t) -_" /• - vd (x, t). -_"Vv_ (x, t)

1

7 )- Vvd (x, t)]20 [vT(x,t) VT(x,t)]. [vvT(x,t)- __,o

-p_ (_(VT(x,t) --*' - v_, (x,t))w_,-_ v_ (x,t)).(v_(x,t) -_"
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+ _(VF(x,t) --_ - va (x,t)) •v,_d)v_ (x, _))(vFI,,, t) -_

_" --2; 9

It is also possible to calculate the force on a sphere at z by computing

l%(z,t)= ,, _,o-_ _lvel_+37 a_,

where the integration is over the variable x', with x = z + x'. This results in

(74) Fp(z)= ,'raapc_ \ Ot +vf'e I+_ Ot 0t +vf'ef .

Now that this force agrees with Taylor's (1928) calculation of the force necessary to hold

0 = O. Thea sl)hcre at rest in an accelerating stream, obtained by setting _ = 0 and vp

tbr('(, is

(7,5) : :a 3 _v I .Vv I

If we first take the gradients involved in eq. (72), using V. V_ip = ( 1/:_'d)(0(_a/0t + V_I".

Va,i) and V --_'v_ = -(1/a_)(Oad/c)t +V_'-Va.d) , then set Vd ° = 0, UdR_ = 0, a._ = const.,

and T_ ¢ = 0; and assume one-dimensional, steady flow, then eq. (72) reduces to eq. (75)

in the limit as nj _ 0. Moreover, it is clear that it should. Consider the one-dimensional

situation pictured in Fig. 1. The continuum model for the particles between z and :r + &:r

gives the rate of change of the momentum of the particles and parts of particles between

:r and :r + A:r, denoted by 15a(x, x + Az), as the stress force transmitted to the, l)artieh's

l>y the particle parts outside of the interval, denoted by (a',ti • T_ )1_ + (a,,(-i) • T_i )I_:+.x_-,

l)lus the force transmitted to the particles through their interface, denoted by M,t/__k,_'.

Thus,

(76) Pd(:r, :c + Az) = (adi- T_)I, + (ad(-i). T_)[_+_ + M_tA:r

The sun: of the forces on all particles with their centers in the interval from z t_)

:r+ ,_k:r is equal to the stun of the pressure forces on all the particles involved. This is
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denoted by E fpndS.

particles, denoted by 15v. Thus,

This is equal to the rate of change of tile niomentmn ()f all the

(77) Pv = _ f pndS

We note that eqs. (76) and (77) differ in the way they treat the particles being cut by the

surfaces at x and x + A,. The relation is that the

(78)

F'd(X,X + Ax)= 15p + (adi. T_)Ix + (C_d(--i)- T_)I_+P'_

- ¢.t,,nfpllaSl + <u.ou /pndSl.:

-- _'-_cut,h, /pndSIx+Ax + _,_acut,out/ plldE]_:+Ax
J J

Here

f p.dSlx

is the sum of the pressure forces on the surfaces of the cut particles at x whose centers arc

inside the interval from x to x + Ax,

Ecut,out / pndSl_
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is the sum of the pressure forces on the surfaces of the cut particles at z whose centers are

outside the interval from z to z + Az. A similar interpretation is valid for the cut particles

at x + Ax.

The terms oi1 the right hand side of eq. (78) represent the resultants of forces on cut

particles. If the approximate equation of motion inside the cut particle is V • T = 0, then

the pressure force over the curved side, plus the stress resultant force over tile flat side

must add up to 0. (Note that if the particles are accelerating, then the forces add up to

be the volume of the part of the cut particle, times the acceleration of its center of mass.

Presumably, this force is small.)

Conclusion

Consistent forms for the interfacial force, the interfacial pressm'e, the Reynolds stresses

and the particle stress have been derived for the inviscid, irrotational incompressible flow

of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity

distribution, giving rise to an effective pressure and stress in the particle phase. The

velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress

field inside the spheres. The relation of these constitutive equations to the force on an

individual sphere is discussed.
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